If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+2g=24
We move all terms to the left:
g^2+2g-(24)=0
a = 1; b = 2; c = -24;
Δ = b2-4ac
Δ = 22-4·1·(-24)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*1}=\frac{-12}{2} =-6 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*1}=\frac{8}{2} =4 $
| 16n^2+10=91 | | 5x=6x-11 | | n^2-10=-9 | | g^2+2g-24=0 | | 2y+5=15−2y | | 7x-2x-3=7x-18 | | 7x-2x-3=28 | | (Q+5)x4=40 | | (E+5)x4=40 | | 5p-4p=-6+15 | | -36-(-30n)=-216 | | 24-10n=n^2 | | 6x+14=9x-10 | | 2(x+30)^2=1800 | | 0=-16t^2+40t+271 | | 84=8+16n-4 | | 40x2+53x+9=0 | | 4y^2+48y-10=0 | | 3x^2+1=19 | | 3v^2-3=18 | | a^2+5a=84 | | 25b^2-3=1 | | 1/3=-1/4u-1/5 | | 4n^2+1=26 | | n=5n+6/6n+5 | | 3(2x-4)=-3x+24 | | 25×5=6x10 | | (x-5)×5=6x10 | | 20t+2(t^2)=100 | | 6x²+1=20 | | 5+16x^2=21 | | 5(t^2)+20t=100 |